
www.manaraa.com

PIPE: Predicting Logical Programming Errors in
Programming Exercises

Dezhuang Miao
School of Data Science and

Engineering
East China Normal University

Shanghai, China
{51185100025,51195100031}@stu.ecnu.edu.cn

Yu Dong
School of Data Science and

Engineering
East China Normal University

Shanghai, China

Xuesong Lu
∗

School of Data Science and
Engineering

East China Normal University
Shanghai, China

xslu@dase.ecnu.edu.cn

ABSTRACT
In colleges, programming is increasingly becoming a gen-
eral education course of almost all STEM majors as well
as some art majors, resulting in an emerging demand for
scalable programming education. To support scalable edu-
cation, teaching activities such as grading and feedback have
to be automated. Recently, online judge systems have been
extensively used for programming training, because they are
able to automatically evaluate the correctness of programs
in real time and thereby make grading work scalable. How-
ever, existing online judge systems lack of the ability to give
effective feedback on logical programming errors. As such,
instructors and teaching assistants are still overwhelmed by
the work of helping students fix programs, especially for
those novice students. To tackle the challenge, we develop
PIPE, a deep learning model that is able to Predict logIcal
Programming Errors in student programs. The model seam-
lessly integrates a representation learning model for obtain-
ing the latent feature of a program and a multi-label classi-
fication model for predicting the error types in the program,
thereby allowing end-to-end learning and prediction. We
use the C programs submitted in our online judge system
to train PIPE, and demonstrate its superior performance
over the baseline models. We use PIPE to implement the
error-feedback feature in our online judge system and en-
able automated feedback on logical programming errors to
the students.

Keywords
Online Judge System, Scalable Programming Training, Log-
ical Programming Error, Automated Error Feedback, Deep
Learning

1. INTRODUCTION
∗Xuesong Lu is the corresponding author.

The evolution of big data and AI technologies has made
programming a ubiquitous skill in almost all industries and
thereby led to a massive demand for programming profes-
sionals. In colleges and MOOC platforms, programming is
no longer a professional course of ICT-related majors and
becoming a general education course for all STEM majors
and even some art majors. As such there is an urgent need
for scalable programming teaching methodologies and learn-
ing tools to cater for the increasingly overwhelmed teaching
workload. One of the most important mechanisms to achieve
scalable teaching is automation. For example, online judge
(OJ) systems [22], which are originally used for competitive
programming contests, have now been extensively used in
programming training mainly due to their ability of auto-
mated program evaluation. Given a programming exercise
and a set of predefined input, the judge system evaluates a
submitted program1 by comparing the expected output with
the actual output obtained from the execution of the pro-
gram. Such a pair of predefined input and output is called a
test case. This feature can largely reduce the grading work-
load of instructors and teaching assistants, and thus make
class sizes scalable to some extent.

Despite the ability of automated program evaluation, exist-
ing OJ systems often provide to students next-to-zero feed-
back on programming errors when they submit an incorrect
program. We refer to an “incorrect program” as a piece of
code that is compilable but generates wrong output for the
test cases. The errors in such a program are often termed
as “logical errors”, as opposed to “common errors” that are
related to the use of incorrect syntax. In our teaching, we
observe that the students can easily fix common errors with
the help of an IDE, but are quite struggling when dealing
with logical errors. In the latter case, existing OJ systems
only show to students feedback such as “Wrong Answer” and
“Runtime Error”, and cannot provide any information on de-
tailed types of errors. The problem is even severer in case
of a quiz, where students are not allowed to check the test
cases2. As such, students, especially novices, rely heavily on
instructors and teaching assistants to help them fix logical
errors, which prevents programming training from becoming
more scalable. This has motivated us to develop an auto-
mated tool for logical error feedback.

1Below we use the term ‘program’ and ‘code’ interchange-
ably.
2Otherwise, students may fake the output.

Dezhuang Miao, Yu Dong and Xuesong Lu "PIPE: Predicting
Logical Programming Errors in Programming Exercises" In:
Proceedings of The 13th International Conference on
Educational Data Mining (EDM 2020), Anna N. Rafferty, Jacob
Whitehill, Violetta Cavalli-Sforza, and Cristobal Romero (eds.)
2020, pp. 473 - 479

473 Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020)

www.manaraa.com

In this work, we develop a deep learning model, PIPE, that
is able to predict the detailed types of logical errors and
therefore can be deployed in OJ systems to enable auto-
mated error feedback. We collect the C programs that are
compilable but fail to pass the test cases, submitted by the
students in our OJ system. We manually label the programs
with a set of predefined types of logical errors. Since each
program may contain multiple types of logical errors, we re-
gard the prediction task as a multi-label classification prob-
lem. Therefore, the architecture of PIPE is inspired by the
work of code2vec [2] and C2AE [24], which are originally de-
veloped to predict semantic properties of code snippets and
boost the performance of multi-label classification tasks, re-
spectively. In particular, we first use the idea of code2vec to
obtain the latent representations of C programs. For each
program, in addition to just embedding the code itself, we
embed two more types of information in the model input,
namely, the corresponding exercise identity and the evalua-
tion results returned by the judge system. Then following
the idea in C2AE, we also transform the corresponding er-
ror types into latent representations with an encoder, and
jointly learn deep latent spaces together with the represen-
tations of the C programs. The error types are finally recon-
structed from the deep latent spaces using a decoder, which
are then used to compute the loss function with the true
error labels for backpropagation. Thanks to the seamless
integration of code2vec and C2AE, PIPE allows end-to-end
training and prediction. We then conduct extensive experi-
ments to demonstrate PIPE’ superior performance over the
baseline models. We deploy PIPE in our OJ system and
show the usage of the automated error-feedback feature.

The rest of the paper is organized as follows. Section 2
presents the detailed architecture of PIPE. Then Section 3
describes the real dataset used in our experiments and presents
the performance evaluation of the proposed model. Section 4
gives a brief literature review of related work, and finally
Section 5 concludes the work and points out some future
work to improve the feature of automated error feedback.

2. THE PIPE MODEL
We describe the architecture and the optimization method
of PIPE in this section.

2.1 Architecture Overview of PIPE
Since each program may contain more than one logical error,
we regard the error prediction task as a multi-label classifi-
cation problem. We use the structure of the C2AE model
as the backbone of PIPE. The C2AE model performs joint
input and output embedding which correlates the features
and the labels, and hence achieves the new state-of-the-art
performance on multi-label classification tasks. In particu-
lar, PIPE uses a feature mapping Fx to transform the pro-
grams X and uses a encoding function Fe to transform the
corresponding labels Y of the logical errors into deep la-
tent spaces L. Then it utilizes Deep Canonical Correlation
Analysis [3] (DCCA) to learn L for joint program and la-
bel embedding. Finally, PIPE uses a decoding function Fd

to recover the label outputs from L, where Fe and Fd thus
compose an autoencoder for the reconstruction of the labels.
The objective function of PIPE is formulated as follows:

Θ = min
Fx,Fe,Fd

Φ(Fx,Fe) + αΓ(Fe,Fd) (1)

where Θ represents the total loss of PIPE, Φ(Fx,Fe) and
Γ(Fe,Fd) denote the loss at the latent space layer for associ-
ating features and labels, and the loss at the output layer for
reconstructing the labels, respectively. The hyperparameter
α balances the two components of the objective function.
Once the training is completed, PIPE can throw away the
component pertaining to Fe and use Fd(Fx) to predict the
logical errors in each program.

In PIPE, we simply use a fully-connected network to im-
plement the functions Fe and Fd, respectively. We further
leverage the idea in code2vec to implement the feature map-
ping Fx for program representation learning, as shown in the
part surrounded by the red dotted line in Figure 1. Rather
than directly embed the source code, code2vec first decom-
poses the program into a collection of paths in its abstract
syntax tree (AST) and then learns to aggregate the paths
into a single program vector. The method is proved to bet-
ter capture the regularities that reflect common program
patterns and lower the learning effort, compared to learning
over original program text. To capture more information
about the logical errors pertaining to each particular ex-
ercise, we embed the exercise identity and the evaluation
results on the test cases returned by the judge system, and
concatenate them with the program vector to form a unified
feature vector, which we call program embedding. Then the
program embeddings are transformed into the latent space
L using a fully-connected layer. The architecture overview
of PIPE is shown in Figure 1.

2.2 Program Embedding
Firstly, we need to transform the programs into vectorized
representations. Following the method in previous work [2,
19], we compile each C program X and parse it to con-
struct an AST. An AST is a tree representation of the ab-
stract syntactic structure of source code, where the nodes
denote the various elements appearing in the original source
code. By traversing between the AST leaves, we can ob-
tain multiple syntactic paths that represent the context of
the corresponding C program. Then the syntactic paths are
converted into context vectors, which are used as one type
of input to learn the values of program embedding. Each
context vector ci ∈ R3d is concatenated to using three indi-
vidual vectors, as depicted in Equation 2,

ci = [si,pi, ti] (2)

where si ∈ Rd, pi ∈ Rd and ti ∈ Rd are the vectorized
representation of the source node, the path and the target
node of the corresponding syntactic path, respectively. Then
each context vector ci ∈ R3d is transformed into a combined
context vector ĉi ∈ Rd using a shared fully-connected layer,
and finally all the combined context vectors are aggregated
into a single program vector vp ∈ Rd using the following
attention mechanism,

vp =

n∑
i=1

αi · ĉi

s.t. αi =
exp(ĉTi · a)∑n
j=1 exp(ĉ

T
j · a)

(3)

where a is the attention vector, αi is the attention weight
and n is the number of combined context vectors. The atten-
tion vector learns the importance of each combined context

Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020) 474

www.manaraa.com

Figure 1: The overview of PIPE’s architecture.

vector. To capture more information pertaining to the er-
rors in the program w.r.t a particular exercise, we further
embed the exercise identity and the evaluation results on
the test cases into two vectors ve ∈ Rde and vr ∈ {0, 1}dr ,
respectively. vr is a bit vector where 1 indicates a correct
output on the test case and 0 otherwise. The vector ve re-
stricts the exercise-related characteristics such as functions
and algorithmic logic, and the vector vr captures specific
types of errors since similar logical errors should result in
wrong output on similar test cases. Eventually the program
embedding vX is obtained by concatenating vp, ve and vr,
as formulated in Equation 4.

vX = [vp, ve, vr] (4)

2.3 Learning Deep Latent Spaces for Joint Pro-
gram & Label Embedding

Following the idea in the work [24], we learn deep latent
spaces L to associate program embedding and label em-
bedding, using Deep Canonical Correlation Analysis [7, 3]
(DCCA). For each C program X, we simply represent its la-
bel Y as a bit vector vY ∈ {0, 1}N , where N is the number of
logical error types. The vector vY may contain multiple 1s
since each program may have multiple types of logical errors.
Then both the program embedding vX and the label embed-
ding vY are transformed into a latent vector of size l using a
fully-connected layer with the tanh activation function. The
holistic functions that mapping X and Y are refer to as Fx

and Fe, respectively, as depicted in Section 2.1. Then the
objective function for correlating the latent representations
are formulated as Equation 5,

Φ(Fx,Fe) = ||Fx(X)− Fe(Y)||2F
s.t. Fx(X)Fx(X)T = Fe(Y)Fe(Y)T = I,

(5)

where I ∈ Rl×l is the identity matrix. By solving the objec-
tive function, we enforce the deep latent space L to associate
the programs X and the labels Y, and hence Fx(X) can be
used as the input to predicting the label Y .

2.4 Recovering Label Outputs from the Deep
Latent Space

In the training phase, the output label Ŷ is reconstructed
from the latent representation Fe(Y) using a decoder Fd,
which is simply implemented as a fully-connected layer in
this work. In the original work [24], the model uses a label-
correlation aware function to calculate the label reconstruc-
tion loss Γ(Fe,Fd) at the output layer, in order to bet-
ter preserve the label co-occurrence information for multi-
label classification task. However, we notice that there is
no strong correlation between the labels of the logical error
types in our dataset. Hence, we insteadly use the multi-label
cross-entropy function to calculate the label reconstruction
loss, as depicted in Equation 6,

Γ(Fe,Fd) =
1

|Y|

|Y|∑
j=1

Ej

Ej = −
N∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi)

(6)

where |Y| is the number of training instances, N is the num-
ber of logical error types and yi equals to 1 if the program
contains the corresponding error and equals to 0 otherwise.
We use the Sigmoid activation function in the output layer.
By solving the loss function, we enforce the autoencoder
Fd(Fe(Y)) to reconstruct the label of the logical error types.
Since the latent representation Fe(Y) and Fx(X) are highly
correlated after the training is completed, Fd(Fx(X)) can
be used to predict the error types of a given C program X.

2.5 Optimization
The gradient of the label-reconstruction loss Γ(Fe,Fd) can
be easily calculated since it is a cross-entropy function. Fol-
lowing the method in [24], the gradient of the association
aware loss Φ(Fx,Fe) in the latent space can be calculated
with the help of Lagrange multipliers [20]. In particular,

475 Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020)

www.manaraa.com

Φ(Fx,Fe) is first reformulated as

Φ(Fx,Fe) = Tr(CT
1 C1) + λTr(CT

2 C2 + CT
3 C3), (7)

where

C1 = Fx(X)− Fe(Y)

C2 = Fx(X)Fx(X)T − I

C3 = Fe(Y)Fe(Y)T − I.

We fix λ to 0.5 in accordance with [24]. Then the gradient
w.r.t Fx(X) and Fe(Y) can be calculated as

∂Φ(Fx,Fe)

∂Fx(X)
= 2C1 + 4λFx(X)C2

∂Φ(Fx,Fe)

∂Fe(Y)
= 2C1 + 4λFe(Y)C3.

(8)

3. PERFORMANCE EVALUATION
In this section, we evaluate the performance of PIPE on
a real dataset collected in our OJ system, and report the
experimental results by comparing PIPE with other baseline
methods. In the end, we demonstrate an example of the
error-feedback feature implemented with PIPE in our OJ
system.

3.1 The Dataset and Settings
The real dataset is collected from an introductory C pro-
gramming course for undergraduate students in our school.
The course uses heavily an OJ system to train the students,
and we collect all the programs with logical errors submitted
by the 29 enrolled students throughout one entire semester.
Most programs have less than 50 lines. After cleaning work
such as removing repeated submissions of programs with mi-
nor changes, we obtain 5196 C programs pertaining to 200
programming exercises. We have carefully designed for each
exercise 10 test cases. Then we randomly disseminate the
URLs of these programs to 17 senior students and ask them
to annotate the labels of logical errors. In order to guarantee
the correctness of annotation, they are allowed to freely run
the programs and check the output of the test cases. Also,
each program is annotated and cross validated by three stu-
dents. The annotation work takes roughly two months.

After annotation, we observe that 5125 out of the 5196 pro-
grams fall into 10 major types of logical errors. The remain-
ing 71 programs have very uncommon errors and are thus
discarded from the dataset. The 10 types of logical errors
are summarized and explained as follows. The distribution
of the numbers of the errors is plotted in Figure 2.

1. Incorrect input variables - mainly due to misuse of
the ‘&’ operator in the scanf() function.

2. No output - forgetting to write output.

3. Incorrect output format - output format not com-
plying with the exercise requirements.

4. Incorrect initialization - errors related to incorrect
initialization of variables.

5. Incorrect data types - mainly due to undesired type
conversions.

6. Incorrect data precision - mainly due to loss of
precision during calculation.

Figure 2: Distribution of the numbers of error types.

7. Incorrect loops - loop-related errors such as incor-
rect termination condition and incorrect step size of
iteration.

8. Incorrect branches - errors due to incorrect condi-
tional statements.

9. Incorrect logic - program’s logic not complying with
the exercise.

10. Incorrect operators - misuse of operators.

The dataset is randomly splitted into training, validation
and testing set with proportion 6 : 2 : 2 in the experiments.
We implement PIPE and four baseline models for compari-
son using Python 3.6 and TensorFlow 1.13. The first three
baseline models are the original code2vec model, code2vec
plus exercise identity embedding, and code2vec plus exer-
cise identity and evaluation result embeddings. The fourth
model is the same as PIPE except that we use the original
label-reconstruction loss in the C2AE model. At the input
we randomly choose 200 context vectors for each program.
At the output all the models are modified to cater for the
multi-label classification task accordingly. The batch size is
64 and the learning rate is 0.001. We use the Adam algo-
rithm for optimization. All other optimal hyperparameter
settings are determined via the validation process, including
the thresholds for rounding to the predicted labels. The met-
rics of interest are therefore precision, recall and F1 score,
in accordance with [2, 24]. We also measure the averaged
percentage of exact match, which means that the predicted
types of errors are exactly the same as the ground truth for
a given program. All experiments are conducted using a
normal PC installed with an Intel Core i7-8550U CPU and
8GB RAM.

3.2 Main Results
The main results are presented in Table 1. For PIPE, the
program embedding size is set to 1383, the size of the la-
tent space is 69, and the balancing factor α = 0.1. For
each model, we calculate seven metrics on the testing set,
which are the averaged percentage of exact match, per-class
precision (C-P), per-class recall (C-R), macro F1 score (Ma-
F1), overall precision (O-P), overall recall (O-R) and micro

3program embedding(138)=program vector(64)+exercise
ID vector(64)+evaluation result vector(10).

Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020) 476

www.manaraa.com

Model Exact Match C-P C-R Ma-F1 O-P O-R Mi-F1
code2vec 0.5735 0.4037 0.3671 0.3822 0.7013 0.6472 0.6714
code2vec + exercise ID 0.5643 0.3696 0.3427 0.3543 0.6978 0.6437 0.6687
code2vec + exercise ID + evaluation 0.5809 0.3798 0.3438 0.3592 0.7088 0.6441 0.6735
PIPE + C2AE loss 0.0 0.09817 0.3679 0.1528 0.2443 0.8497 0.3792
PIPE 0.6259 0.4386 0.3984 0.4151 0.7527 0.7037 0.7255

Table 1: Comparison between PIPE and baseline models.

F1 score (Mi-F1). We observe that PIPE performs con-
stantly much better than the other models on all metrics.
Although PIPE using original C2AE loss achieves the best
overall recall, it has poor results on all other metrics. This is
because the label-reconstruction loss in C2AE attempts to
preserve the correlation between the labels and hence more
error types are predicted. However, this also drastically re-
duces the precision and causes no case of exact match is
predicted. The results prove the effectiveness of the seam-
less integration of code2vec and C2AE, as well as the use of
cross-entropy for the label-reconstruction loss.

3.3 Sensitivity Analysis
We perform sensitivity analysis for three most important
hyperparameters, that is, the size of program embedding
vX , the size of the latent space l and the loss balancing
factor α. For each of them, we fix the values of all other
hyperparameters and vary it in the corresponding ranges.

The size of program embedding. The size of vX equals
to the sum of the size of program vector vp, the size of
exercise identity vector ve and the size of evaluation result
vector vr. The size of vr is fixed to 10 since each exercise has
10 test cases, and the size of ve is fixed to 64 for the sake of
simplicity. We then vary the size of vp in (64, 128, 192, 256),
following the setting in [2]. Therefore, the size of vX varies
in (138, 202, 266, 330). The results are presented in Figure 3.
We observe that PIPE prefers smaller program embedding
size on all metrics.

The size of the latent space. Following [24], we measure
the size of the latent space L as its ratio to the size of pro-
gram embedding, i.e., l/|vX |. We vary the ratio in the range
[0.1, 1] with increments 0.1, and report the results in Fig-
ure 4. We observe that roughly all the metrics first increase
and then decrease as the size of latent space increases. Over-
all taking half of the size of program embedding achieves the
best performance.

The balancing factor α. We vary α in the range [0.1, 1]
with increments 0.1. We also set α = 0.05 to show the per-
formance on the very small value. The results are presented
in Figure 5. We observe that α = 0.1 achieves the best
overall performance. Further increasing α would break the
balance between the losses of the two parts.

3.4 Demonstration
We have implemented the error-feedback feature in our OJ
system using PIPE. Figure 6 shows the usage of the feature.
In case of an incorrect submission, a student may check the
possible errors predicted by the system and modify the pro-
gram accordingly, where each type of error is associated with
a probability. For example in Figure 6, the student may have

99.04% chance to write incorrect loops, and may also have
93.21% chance to lose precision during calculation, etc.

4. RELATED WORK
Code error prediction (or detection) is a branch of auto-
matic software repair (ASR) [13], which is a long and active
research area of software engineering. ASR is with respect to
an oracle that is able to determine whether the execution of
a given program is correct. Among various types of oracles,
test suites or test cases are mostly used in recent ASR re-
searches, which are also used as an important input feature
in our PIPE model. Traditionally, test-suite-based methods
can be broadly classified into two categories, i.e., search-
based methodology [9, 8, 11] and semantics-based method-
ology [14, 5, 12]. The former category of methods explore
a search space of programs to find the most suitable repair
candidate that can pass the test cases; the latter category of
methods synthesize a repair candidate using semantic infor-
mation via symbolic execution and constraint solving. All
these algorithms are specifically designed for repairing soft-
ware with thousands to hundreds of thousands lines of code,
and often cannot be directly applied in the setting of pro-
gramming education. For instance, search-based methodolo-
gies typically rely on redundancy presented in other parts of
the program to limit the search space, whereas redundant
code is hardly observed in a students’ program. Moreover,
rather than directly correcting the bugs in students’ pro-
grams, providing hints for students to find the errors is more
preferable for education purpose. Therefore, the methods
for ASR are somehow too heavy to cater for our prediction
requirements.

In the past few years, research at the intersection of deep
learning and programming languages has been driven by the
availability of“big code”. Massive source code obtained from
the sites such as GitHub as well as some MOOC courses
facilitates the design of learnable probabilistic models that
exploit abundant patterns of code. These models are then
applied to various applications, including program repair [1,
21], clone detection [10] and code synthesis [18], etc.

Training deep learning models to provide feedback to stu-
dent code has recently drawn attention of both researchers
and programming educators. For example, the work of [4]
trains recurrent neural networks to automatically detect and
correct syntax errors in programming assignments. The
models are first trained on syntactically correct student pro-
grams and then are used to predict the correct token se-
quences given the prefix token sequence of a student pro-
gram with syntax errors. Similarly, the work of [6] trains a
multi-layered sequence-to-sequence neural network with at-
tention to predict erroneous locations in student programs
and attempts to fix the errors with correct statements. The

477 Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020)

www.manaraa.com

Figure 3: Varying the size of pro-
gram embedding.

Figure 4: Varying the ratio of the
size of latent space to the size of pro-
gram embedding.

Figure 5: Varying the balancing fac-
tor α.

Figure 6: The usage of the error-feedback feature.

model requires to construct training pairs of syntactically in-
correct program and the corresponding syntactically correct
program. Since both works are focused on detecting and fix-
ing syntax errors, they cannot generate abstract syntax trees
for program embedding and thus directly use the language
tokens in the original program text. The work in [16] trains
an autoencoder to learn joint embedding of program states
and programs. The embedding are then used as the input to
train an RNN-based model, which can automatically propa-
gate teacher feedback to similar programs. While the focus
of their work is representation learning of program state,
our model allows end-to-end learning and prediction of log-
ical errors in programs. Other work pertaining to program
feedback in the educational setting include [15, 17, 23].

5. CONCLUSIONS
To automate the feedback on logical programming errors in
OJ systems, we develop PIPE, a deep learning model that
is able to predict the types of errors in students’ programs.
PIPE seamlessly integrates program representation learn-
ing into a multi-label classification model, and thereby can
perform end-to-end learning and prediction. To boost the
prediction performance, PIPE also incorporates the exercise
identity and the evaluation results on the test cases into the

program representation, with the hope that the error in-
formation w.r.t each particular exercise and each particular
evaluation pattern could be captured. Experimental results
on a real dataset show PIPE’s superior performance over
the baseline models. We have used PIPE to implement the
error-feedback feature in our OJ system, and will further
evaluate its impact on programming education.

In future, we plan to improve PIPE so that it may not only
predict but also localize the errors, i.e., telling the students
which lines of the program may contain logical errors and
what are the potential types of the errors. Such feedback
would further promote students’ learning efficiency and help
us to achieve higher scalability in programming education.

Acknowledgement
This work was partially supported by the grant from the
National Natural Science Foundation of China (Grant No.
U1811264).

6. REFERENCES
[1] M. Allamanis, M. Brockschmidt, and M. Khademi.

Learning to represent programs with graphs. In
Proceedings of the International Conference on
Learning Representations, 2018.

[2] U. Alon, M. Zilberstein, O. Levy, and E. Yahav.
code2vec: Learning distributed representations of
code. Proceedings of the ACM on Programming
Languages, 3(POPL):1–29, 2019.

[3] G. Andrew, R. Arora, J. Bilmes, and K. Livescu. Deep
canonical correlation analysis. In International
conference on machine learning, 2013.

[4] S. Bhatia and R. Singh. Automated correction for
syntax errors in programming assignments using
recurrent neural networks. In International Conference
on Software Engineering, 2018.

[5] F. DeMarco, J. Xuan, D. Le Berre, and M. Monperrus.
Automatic repair of buggy if conditions and missing
preconditions with smt. In Proceedings of the 6th
international workshop on constraints in software
testing, verification, and analysis, pages 30–39, 2014.

[6] R. Gupta, S. Pal, A. Kanade, and S. Shevade. Deepfix:
Fixing common c language errors by deep learning. In
Thirty-First AAAI Conference on Artificial
Intelligence, 2017.

Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020) 478

www.manaraa.com

[7] J. R. Kettenring. Canonical analysis of several sets of
variables. Biometrika, 58(3):433–451, 1971.

[8] D. Kim, J. Nam, J. Song, and S. Kim. Automatic
patch generation learned from human-written patches.
In 2013 35th International Conference on Software
Engineering (ICSE), pages 802–811. IEEE, 2013.

[9] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer.
Genprog: A generic method for automatic software
repair. Ieee transactions on software engineering,
38(1):54–72, 2011.

[10] L. Li, H. Feng, W. Zhuang, N. Meng, and B. Ryder.
Cclearner: A deep learning-based clone detection
approach. In 2017 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages
249–260. IEEE, 2017.

[11] F. Long and M. Rinard. Staged program repair with
condition synthesis. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software
Engineering, pages 166–178, 2015.

[12] S. Mechtaev, J. Yi, and A. Roychoudhury. Directfix:
Looking for simple program repairs. In 2015
IEEE/ACM 37th IEEE International Conference on
Software Engineering, volume 1, pages 448–458. IEEE,
2015.

[13] M. Monperrus. Automatic software repair: a
bibliography. ACM Computing Surveys (CSUR),
51(1):1–24, 2018.

[14] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and
S. Chandra. Semfix: Program repair via semantic
analysis. In 2013 35th International Conference on
Software Engineering (ICSE), pages 772–781. IEEE,
2013.

[15] E. Parisotto, A.-r. Mohamed, R. Singh, L. Li,
D. Zhou, and P. Kohli. Neuro-symbolic program
synthesis. In Proceedings of the International
Conference on Learning Representations, 2017.

[16] C. Piech, J. Huang, A. Nguyen, M. Phulsuksombati,
M. Sahami, and L. Guibas. Learning program
embeddings to propagate feedback on student code. In
Proceedings of the International Conference on
Machine Learning, 2015.

[17] Y. Pu, K. Narasimhan, A. Solar-Lezama, and
R. Barzilay. sk p: a neural program corrector for
moocs. In Companion Proceedings of the 2016 ACM
SIGPLAN International Conference on Systems,
Programming, Languages and Applications: Software
for Humanity, pages 39–40, 2016.

[18] M. Rabinovich, M. Stern, and D. Klein. Abstract
syntax networks for code generation and semantic
parsing. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics, 2017.

[19] V. Raychev, M. Vechev, and A. Krause. Predicting
program properties from” big code”. ACM SIGPLAN
Notices, 50(1):111–124, 2015.

[20] R. T. Rockafellar. Lagrange multipliers and
optimality. SIAM review, 35(2):183–238, 1993.

[21] M. Vasic, A. Kanade, P. Maniatis, D. Bieber, and
R. Singh. Neural program repair by jointly learning to
localize and repair. In Proceedings of the International
Conference on Learning Representations, 2019.

[22] S. Wasik, M. Antczak, J. Badura, A. Laskowski, and
T. Sternal. A survey on online judge systems and their

applications. ACM Computing Surveys (CSUR),
51(1):1–34, 2018.

[23] M. Wu, M. Mosse, N. Goodman, and C. Piech. Zero
shot learning for code education: Rubric sampling
with deep learning inference. In Proceedings of the
AAAI Conference on Artificial Intelligence,
volume 33, pages 782–790, 2019.

[24] C.-K. Yeh, W.-C. Wu, W.-J. Ko, and Y.-C. F. Wang.
Learning deep latent space for multi-label
classification. In Thirty-First AAAI Conference on
Artificial Intelligence, 2017.

479 Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020)

